If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-28=0
a = 1; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·1·(-28)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*1}=\frac{0-4\sqrt{7}}{2} =-\frac{4\sqrt{7}}{2} =-2\sqrt{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*1}=\frac{0+4\sqrt{7}}{2} =\frac{4\sqrt{7}}{2} =2\sqrt{7} $
| 3x(18-3)+(6+4)/2=50 | | (8-x)/7=3 | | 2x-31=-33 | | 5(4–k)=–10k | | 1=5x=-15+x | | 11j-10j=8 | | 2/27=1/3n | | -5(2b+6)=-90 | | -11n=n+2 | | 3/4+b=7/5 | | −9v32=−5−43v | | .1+|2+x|=9 | | 163=-x+244 | | 7a+0.3a=4/5 | | 12x+15=11x+16 | | |2v+11|=3 | | -v+77=240 | | 3s-39=s6 | | (n+7)+(n+3)+(n+2)+n=42 | | -1+2n=2(n-4) | | 3(2x-4)+5=4x-10 | | 9x=40+x | | x×x=81 | | x-4/x-3=1 | | 3.4=–13.6+(–3.4c)+1.7c | | -1+2n=2 | | 5n+8-2=-8n+6 | | 21n^2+21n=0 | | y/9=8/11 | | -2x-1=-9x+6 | | 10x-6=4x+4 | | 2(3p+8)=-2(2-p) |